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Hyperbolic Geometry

We endow the hyperbolic half plane H2 := R × (0,∞) with
the Riemannian metric g = 1

y2 dx dy. All Möbius transformations
of H2 are now isometries - even scaling! This makes geomet-
ric variational problems in H2 interesting – they have many
invariances.
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Figure 1: Geodesics in H2

Euler’s Elastica Problem

Let (M, g) be a smooth two-dimensional Riemannian manifold and
γ : (a, b) → M be a smooth curve. The elastic energy of γ is
given by

EM(γ) :=
∫
γ

κ2 ds,

where ds denotes the arclength parameter and κ denotes the (signed)
curvature of γ in M . The energy was introduced by Euler in 1744
for M = R2. He was already able to discuss its critical points,
so-called Euler elasticae.

There exists an astounding connection to the Willmore Energy
of surfaces in case that M = H2 is the hyperbolic plane: Let
S(γ) ⊂ R3 be the surface that arises from revolution of a closed
curve γ : S1→ H2 around the x−axis. Then the Willmore energy of
S(γ) differs only by a constant factor from EH2(γ).

Goal: Understanding the Gradient Flow

We study smoothly closed elasticae in H2 to discuss the convergence
of the elastic flow, i.e. the L2-gradient flow of the elastic energy. Its
long-time-existence follows from [1], but one can say more:

MAIN RESULT: We can provide a complete classification
of the asymptotic behavior of the elastic flow: If we start the
flow with a curve of energy below 16, the elastic flow converges.
Moreover, one can find non-convergent evolutions with initial
data of energy just slightly above 16.
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Figure 2: Initial data with non-convergent hyperbolic elastic flow

Construction of Non-Convergent Evolutions

From our explicit parametrization of hyperbolic elasticae, we can
deduce the following

Theorem 1. There is no closed elastica in H2 with vanishing Eu-
clidean total curvature.

The euclidean total curvature is a flow invariant.

Starting the flow with a closed curve of vanishing Euclidean total
curvature (cf. Figure 2) must thus lead to a non-convergent evolution,
since each limit of such an evolution has to be an elastica with
the same Euclidean total curvature.

Convergence below an Energy Threshold

The following Reilly-type inequality relates hyperbolic length
and elastic energy:

Theorem 2. For each ε > 0 there exists a constant c(ε) > 0
such that for each smoothly closed curve γ : S1 → H2 such that
EH2(γ) < 16− ε one has LH2(γ) ≤ c(ε)EH2(γ).

The proof works by examination of critical points of EH2/LH2, which
we can also parametrize explicitly. If the hyperbolic arclength is
controlled along the flow, results in [1] imply convergence.

Methods and Parametrizations

A first study of closed elasticae inH2 was conducted in [2], in particular
the Euler-Lagrange equation κ′′+ 1

2κ
3−κ = 0 was found. Given

this one can easily retrieve the curvature κ, but it remains difficult to
determine whether elasticae close smoothly.

With order reduction techniques from [2], we obtain explicit
solutions, which allow us to look at hyperbolic elasticae with our
“Euclidean eyes”.
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Figure 3: Plots of generic hyperbolic elasticae that are not circles.
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Figure 4: Computing the Euclidean total curvature can be involved
and invokes the challenge of excluding shamrock-like looking elasticae.
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